Deep Reinforcement Learning for Green Security Game with Online Information

Lantao Yu'*, Yi Wu?, Rohit Singh?, Lucas Joppa®, Fei Fang®

!Shanghai Jiao Tong University, 2University of California, Berkeley, 3World Wild Fund for Nature
4 Microsoft Research, ® Carnegie Mellon University

Abstract

Motivated by the urgent need in green security domains such
as protecting endangered wildlife from poaching and prevent-
ing illegal logging, researchers have proposed game theo-
retic models to optimize patrols conducted by law enforce-
ment agencies. Despite the efforts, online information and
online interactions (e.g., patrollers chasing the poachers by
following their footprints) have been neglected in previous
game models and solutions. Our research aims at providing a
more practical solution for the complex real-world green se-
curity problems by empowering security games with deep re-
inforcement learning. Specifically, we propose a novel game
model which incorporates the vital element of online infor-
mation and provide a discussion of possible solutions as well
as promising future research directions based on game theory
and deep reinforcement learning.

Introduction and Research Problem

Game theory has become a well-established paradigm for
addressing complex resource allocation and patrolling prob-
lems in security and sustainability domains. Models and al-
gorithms have been proposed and studied extensively in the
past decade, forming the area of “security game” (Tambe
2011). More recently, machine learning based models have
been used to predict adversarial behaviors in green security
domains such as wildlife poaching, and game-theoretic so-
lutions built upon the learned behavioral models have been
proposed (Xu et al. 2017; Gholami et al. 2017; Kar et al.
2017).

Despite the efforts, a key element, online information,
has been neglected in previous game models. For example,
a well-trained ranger should be able to use the online in-
formation revealed by the traces left by the poacher (e.g.,
footprints, tree marks) to make flexible patrolling decisions
rather than stick to the premeditated patrol routes. Thus there
is no doubt that online information received during the in-
teractions between the players plays an important role in the
decision-making process and how to incorporate such online
information into the solutions remains to be disclosed.

However, incorporating online information into green se-
curity games leads to significant complexity, inevitably re-

*The work was done while L. Yu interned at CMU.
Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sulting in games with sequential moves and imperfect infor-
mation. This makes traditional mathematical programming-
based approaches for computing the equilibrium of the game
intractable. On the other hand, reinforcement learning (RL)
(Sutton and Barto 1998) algorithms are designed to exploit
online information. RL employs a goal-oriented learning
scheme where the agent learns to maximize its long-term
cumulative reward by sequentially interacting with the en-
vironment. Recently, by employing the modeling power of
deep learning, reinforcement learning has been successfully
used on a wide variety of tasks, including playing the games
of Atari (Mnih et al. 2015) and Go (Silver et al. 2016),
robotic manipulation (Gu et al. 2016) and sequential data
generation (Yu et al. 2017). Furthermore, researchers have
generalized single-agent RL methods to the multi-agent sys-
tems where multiple agents coexist and interact with each
other (Busoniu, Babuska, and De Schutter 2008).

Thus in order to provide a more practical solution for the
complex real-world security problems, in this paper we pro-
pose a novel game-theoretic model, which incorporates the
vital online information that has been commonly neglected
by literature and provide a discussion of potential algorithms
that combine deep reinforcement learning and game theory
to approximately compute equilibrium strategies in a com-
plicated spatio-temporal setting with online interactions. In
this paper, we illustrate our model and algorithm in the do-
main of protecting wildlife from poaching but note that the
proposed solutions can be applied to other green security do-
mains such as protecting the forest from illegal logging and
protecting fisheries from overfishing.

Related Work

Stackelberg Security Games (SSGs) have been studied ex-
tensively and successfully deployed in various security do-
mains (Tambe 2011; Pita et al. 2008; An et al. 2011,
Fang, Jiang, and Tambe 2013; Fang et al. 2016). Most of
the work in SSGs consider implicitly or explicitly a normal-
form game represented by payoff matrices, where rows cor-
respond to pure strategies of one player, columns correspond
to pure strategies of the other player, and payoff values in
the matrices represent the utilities for each joint action taken
by the players. Each player tries to maximize their own ex-
pected utility by finding a pure or a mixed strategy, i.e., a
probability distribution over the pure strategy set. However,

one player (the attacker) may choose his strategy after ob-
serving the other player’s (the defender’s) strategy and try
to best respond to it. When the game is zero-sum, the com-
monly used solution concepts including Nash Equilibrium,
Minimax, Maximin, and Stackelberg Equilibrium coincide,
and one can use linear programming (Adler 2013), ficti-
tious play (Brown 1951) and regret minimization (Blum and
Monsour 2007) to find the solution. To provide a scalable
solution for such games and represent the optimal strategy
with a small support set (i.e., only a small number of pure
strategies are chosen with non-zero probability), (McMa-
han, Gordon, and Blum 2003) proposed column/constraint
generation techniques, also known as double oracle algo-
rithm. This algorithm repeatedly computes the equilibrium
strategies of the restricted subgame that only involves a sub-
set of all possible pure strategies for each player, computes
a pure strategy that is the best response to the equilibrium
strategy of the opponent found previously, and add the new
strategies to the restricted game. Double Oracle algorithm is
guaranteed to converge to a Nash equilibrium (NE) in games
with finite actions. However, in the worst case, the algorithm
has to enumerate all pure strategies and solves the origi-
nal game, such as in Rock-Paper-Scissors. In extensive-form
games such as the ones we propose in this paper, the number
of pure strategies can be huge when converted to a normal-
form game and optimal solution may need a large support
set that can hardly be represented efficiently. As a natural
generalization to the double oracle algorithm, (Lanctot et al.
2017) proposed policy-space response oracles (PSRO) algo-
rithm, where the pure strategy or action of each player is
generalized to a parametrized policy, and any reinforcement
learning algorithm, such as deep Q-Learning (Mnih et al.
2015), can be used to solve the best response policy in each
iteration. To address the challenge that it can take a very long
time for an RL algorithm to find a good response policy as
much of the basic behavior has to be relearned from scratch,
Lanctot et al. proposed to use deep cognitive hierarchies
(DCH) to approximate PSRO using a parallel and asynchro-
nized learning approach with a fixed number of iterations
being considered, and thus trades away solution quality for
efficiency. This approach loses the convergence guarantee of
Double Oracle algorithm but provides empirically good so-
lutions in two example games. In this paper, we use a similar
framework of PSRO, with concrete implementation for our
proposed security game model.

Spatio-Temporal Security Game with Online
Information

Game Model

As shown in Figure 1, the basic environment of the pro-
posed game is based on a grid world. Each grid represents
a unique geographic area with terrain features ¢; ; such as
animal density, elevation, slope, etc. For simplicity, in our
game setting, we choose the most representative feature, the
animal density, as ¢; ;. There are two players (which can be
easily scaled to multiple players for each role) in this game,
i.e., the patroller and the poacher. At the beginning of each
round, the poacher chooses one out of the four corners as the

=
"
=
4

1
1

lil O | DID

| ll L | | |]D
O i[| iE\ | M ID
O 1.r } O il O Il

3. [m 0t
1 i 1

—— b

D m B O 8 =

.

Figure 1: Illustration of the combat poaching security game
with online information. The red dot and blue dot represent
the poacher and patroller respectively. The red arrows and
blue arrows represent their corresponding footprints. The
color darkness of the square on the lower right corner of
each cell indicates the animal density. The red squares on
the upper left corner of some cells represent the destructive
tools placed by the poachers. Note that each player only has
a local observation, which means they can only observe the
game state for their current grid, rather than the game state
for the whole world.

entry point, and the patroller always starts from the center
grid of the world, i.e., the patrol post. The poacher sets off
with a limited number of destructive tools, i.e., snares, and
tries to use them to catch as many animals as possible, which
will be embodied in the reward structure. At each time step
t, the patroller takes an action selected from its action space
AP {up, down, right, left, stand still}; simultaneously, the
poacher takes an action a?’ selected from its action space
AP {up, down, right, left, stand still} x {place snare, not
place snare}. Note that since any player can choose to stand
still at any time step, we do not make any assumptions about
the order of entering the world for both players.

As shown in Figure 1, each player will leave traces (i.e.,
footprints) as he moves through an area. These traces can be
used by the player to get a sense of his opponent’s track and
strategy, which also play an important role in the real world.
It is nontrivial for human to explicitly program the optimal
action rule based on the observed traces since in some sce-
narios simply following the footprints (for the patroller) or
escaping from the footprints (for the poacher) is not the best
strategy. For example, a poacher may not be deterred by the
patroller’s footprint if he knows the animal density in that di-
rection is very high and the patroller may have already left.
Furthermore, it is also unclear what is the best strategy when
multiple footprints exist in the same grid.

In this game, each player has only local observation,
which means they can only observe the game state in the
current grid rather the full game state. In the real world, both
the poacher and patroller typically have a limited view due
to the dense vegetation and complex terrain. We assume the

players have unlimited memory and can keep a record of the
observations since the beginning of each game.

To accurately reflect the goal of the poacher and patroller,
we design the reward structure as follows. Suppose a snare
has been placed in a grid with coordinate (i, j), at each time
step the environment will determine whether or not an an-
imal is caught by that snare based on a function P(¢; ;),
which takes the animal density of that area as input and out-
put the probability of an animal being caught. After catch-
ing an animal, the snare will be removed from the system.
Since the poacher tries to catch as many animals as possi-
ble by strategically placing the snares, and in the meantime
avoid encountering the patroller, he will receive a positive
reward 777 when a certain snare catches an animal and
a negative reward (i.e., penalty) r”?, . when encountering
the patroller. Since the patroller tries to finding the snares
before they cause any damage and catch the poacher to stop
them from placing more snares, he will receive a positive
reward 777, . when finding a poacher and a negative re-
ward r2%. . when a snare catches an animal. For general-
ity, here we do not require the game to be a zero-sum game
(T(Z:)stch + Tf{ftch = 07r52imal + rs(rln'mal = 0) The game
ends when the patroller successfully find the poacher and all
the snares or the maximum time step has been reached.

A player’s pure strategy or policy in this game (we use
policy and strategy interchangeably in this paper) is a de-
terministic mapping from his observation and action history
to his action space. His final payoff is the cumulative reward
minus cumulative penalty. A player can employ a mixed pol-
icy, which is a probability distribution over the pure strate-
gies.

Most work in security game literature assumes that the
attacker can observe the defender’s mixed policy before
choosing his own policy. However, sometimes the attackers
in green security domains may not be intelligent enough to
adapt to the defender’s strategy. In this paper, we focus on
two extreme cases and discuss the solution approaches for
finding the optimal defender strategy under these settings.
The first case is when the attacker is reactive but not adap-
tive, i.e., the attacker is not able to adapt to the defender’s
strategy, but instead chooses a fixed heuristic policy only
based on the features of the environment and the online in-
formation. In the chosen policy, the attacker may still react
to online information, e.g., the poacher may be deterred by
the footprints of the patroller, but such reaction does not take
into account the defender’s mixed strategy, from which ad-
ditional information can be derived, e.g., the probability that
the defender will return to an area he has been to before.
In this case, we aim to find the optimal defender strategy
against a known reactive attacker. The second case is the at-
tacker is highly adaptive and best responds to the defender’s
strategy. In this case, the solution concept we use is Strong
Stackelberg Equilibrium (SSE), and we aim to find the de-
fender’s strategy in SSE, which is also the defender’s opti-
mal strategy assuming a best-responding attacker.

Defender Policy Representation

Before discussing the computation of equilibrium strategies
for the players, we first consider how to efficiently represent

a player’s pure or mixed strategies. Given the complexity
of the game, finding the optimal policy is challenging. In
fact, the memory needed for just representing a defender’s
pure strategy in the form of a detailed mapping from full
observation and action history to action grows exponentially
in the size of the game. Thus representing a player’s mixed
strategy in its naive form (a probability distribution over
the pure strategies) can be intractable. Therefore, instead of
using a naive form, we consider several compact representa-
tions of the defender’s pure or mixed strategy using the key
elements of the history and the environment and look for the
defender’s optimal strategy in the restricted space.

Heuristic Rule-Based Policy The first model family of
defender policy we consider is based on heuristic rules. Sup-
pose the current coordinate of the patroller is (m,n) and
the maximum coordinate on the map is (M, N), then we
can define the average animal density for the up direction
as m > o<icm.0<j<n Aij» where A; ; is the animal
density for area with coordinate (4, 7). Similarly, we can de-
fine the average animal density for all the other directions.
For simplicity, we will use an integer k& € {1,...,5} to de-
note one of the five directions (the fifth “direction” is for the
action “stand still”’) and we can get an average animal den-

sity vector A € R+° (A5 is the animal density of the cur-
rent location). Another important factor that should be taken
into consideration is the observed footprints. We use vec-
tors I € {0,1}° and O € {0, 1} to represent the footprints
states, where each dimension I, (or Oy) is a binary variable,
indicating whether or not there is an entering (or leaving)
footprint from that direction (for the fifth “stand still” di-
rection, Is = Os = 0). Now we can define the heuristic
defender policy as

exp(wa AR+ w; o I+ w, - Ok)
Yo exp(wg - A +w; - I +w, - O,)
(L
where w,, w; and w, are parameters for the average animal
density, enter footprints and leaving footprints respectively.

Tpalay® = kls}") =

Deep Neural Network Based Policy The second class of
defender policy is represented by neural networks, and we
will use reinforcement learning to find an empirically opti-
mal strategy. From the perspective of reinforcement learn-

ing, at each time step ¢, the state of the poacher s’ and

patroller s7* are comprised by their memory of the oppo-
nent’s observed footprints, current position coordinates, the
corresponding terrain information, i.e., animal density and
the normalized game time. The policy mp,(af”|s?) and
Tpo(a}’|st) for the patroller and poacher respectively will
be a mapping from their state space to their action space.
Since the game state has strong spatial patterns, here we
employ a convolutional neural network for implementing the
learning policy, which takes as input a 3-D tensor, with the
same width and height as the grid world and each channel
representing different features. Specifically, the first eight
channels are binary values indicating the existence of each
kind of footprints ({four directions} x {entering or leav-
ing}); the ninth channel is the animal density; the tenth chan-
nel is one-of-K encoding, indicating the agent’s current loca-

tion; the eleventh channel is the normalized time step, which
is the same for all grids. In our experiments, the defender
neural network takes a state representation of size 7 X 7 as
input. The first hidden layer is a convolutional layer with
16 filters of size 4 x 4 and strides 1 x 1. The second layer
is a convolutional layer with 32 filters of size 2 x 2 and
strides 2 x 2. Each hidden layer is followed by a relu non-
linear transformation and a max-pooling layer. The output
layer is a fully-connected dense layer which transforms the
hidden representation of the state to the final policy. If the
neural network is an action-value network, then each out-
put dimension represents the Q-value for each action, and
the neural network corresponds to a pure strategy for the de-
fender where the defender takes the action with the highest
Q-value generated by the network, with the given state as
input. If the neural network is a stochastic policy network,
then each output dimension represents the probability of an
action mp, (a}”|s?), and the neural network corresponds to
a mixed strategy for the defender where the probability of
taking each pure strategy is the joint probability of taking
the chosen action in each time step. While some pure or
mixed defender strategies cannot be captured by the neu-
ral network based representation, the strong expressiveness
makes it a memory-efficient alternative. Furthermore, as de-
tailed in later sections, the NN-based representation com-
bined with RL algorithms leads to defender strategies that
perform well empirically. And we expect that the current
feedforward neural network implementation of the policy
can further be strengthed by incorporating recurrent neu-
ral networks, such as Long Short-Term Memory networks
(Hausknecht and Stone 2015).

Attacker Policy Representation

Likewise, there are two ways to represent the attacker’s pol-
icy. Different from the defender’s policy, the attacker’s pol-
icy is two-fold. At each time step, he should decide whether
to put a snare in current location and which direction to
move. For the movement decision, we again use three pa-
rameters w,, w; and w, to control different factors. For
the placing snares decision, since a higher animal density
means a higher probability of catching an animal, we de-
fine the probability of placing a snare in grid (m,n) as

%, where T is a temperature parameter.
i 2 i.j

Like the defender’s policy, we can use a similar convo-
lutional neural network structure to represent the attacker’s
strategy. The only difference is that we should change the
output layer since the action space combines both the move-
ment decisions and placing snare decisions.

Finding Optimal Defender Strategy Against
Reactive Attacker

In this section, we consider the case where the attacker is
reactive and find optimal defender strategies in the restricted
defender strategy space with the compact representations.
We focus on the neural network based policy and propose
to use deep reinforcement learning based algorithms to find
the empirical optimal defender strategy against a reactive at-

tacker with known parameters!.

With deep reinforcement learning, the intelligence of the
agent can evolve through the interactions between the agent
and the environment. Basically, there are two categories of
RL methods, i.e. the value based methods and the policy
based methods. For value based methods, one of the most
effective and efficient methods is Deep Q-Learning (DQN)
(Mnih et al. 2015), which uses an off-policy replay buffer to
keep all the transitions (s, at, 7, s¢+1) and update the Q-
network as

Q(st,at) 1 +7 max Q¥ (5441, a’) 2)

To solve the proposed game, which involves a highly dy-
namic environment, we employ the double DQN methods
(Van Hasselt, Guez, and Silver 2016) to improve the stabil-
ity of training:

Q(s1,a1) 4= 11 +YQ™* (5141, argmax Q(sp41,a')) (3)

For policy based methods, i.e., the stochastic policy repre-
sentation, we directly optimize the #-parametrized policy
with the policy gradient theorem (Sutton et al. 2000)

T
VoE-[R] = E.[Y_ Vglogm(ar|ss, 0) - (Q" (s, ar) — V7 (s¢))]
t;O
=E.[>_ Vglogm(ass;,0) - A"(sr,a0)] ()
t=0

where the advantage function A” (s, a;) can either be ap-
proximated by Monte Carlo methods or neural networks. In
our experiments, for a lower variance, we use a neural net-
work to approximate the state-value function V™ (s), and use
r(s¢,at) + V™ (s441) — V7 (s¢) as an unbiased estimation of
the advantage function A™ (s, a;), i.e. the actor-critic algo-
rithm (Konda and Tsitsiklis 2000).

Experiments and Discussions

In this section, we will discuss some initial experiment re-
sults. First, we want to examine the effectiveness of differ-
ent defender policies against a reactive heuristic rule-based
attacker policy. In the first set of experiments, the patroller
is implemented with heuristic rules, policy gradient meth-
ods and deep Q-learning and fight against a fixed heuristic
poacher, whose parameters w,, w; and w, are set based on
suggestions from domain experts.

In the experiments, we observe that with a granularity
of 0.1 and searching range from -5 to +5, searching opti-
mal parameters for heuristic methods requires lots of simu-
lations and can be very time-consuming. On the contrary,
DQN methods can find the optimal strategy very quickly
and efficiently, through the interactions between the agent
and environment. The expected utility for the heuristic pa-
troller with grid search for the optimal parameters is 2.97
and for the DQN-based patroller is 7.23, from which we can

"For heuristic rule-based policy, we simply use grid search to
find the parameters of the empirically optimal defender strategy in
the restricted space.

(] [[O [
ll‘ 1 1
m 0 m O O § =m
(a) At timestep 22
’ 1
CTT T

I i O i | O [II
1‘ = 1 O O t@
| K J 1 1
E O 5 § § =
(b) At timestep 23

Figure 2: Screenshots of the game, where the poacher strat-
egy is heuristic rule based and the patroller strategy is DQN
based.

tell that when faced with a non-adaptive opponent, DQN
methods can effectively find a strategy that performs very
well. But when we train a DQN-based poacher against a
fixed DQN-based patroller, we observe that the DQN-based
patroller can easily be exploited by an adaptive opponent.
This is because a DQN policy is a deterministic policy since
given a certain state, we always choose the action with the
maximum Q-value. In a security game, any pure strategy can
be easily exploited by the opponent, which reveals the chal-
lenge of the proposed game. Then a natural solution should
be that instead of learning an action-value function and tak-
ing actions greedily, we can directly optimize a stochastic
policy. However, in our experiments, we find that in such a
highly dynamic game with imperfect information, it is very
difficult to effectively train a stochastic policy with policy
gradient methods. One possible reason is that different from
the traditional RL problems, in this game the state is only
a very limited local observation and it is not informative
enough to learn the optimal action distribution. Before see-
ing any footprints, we require the agent to perform a long
sequence of random guesses and as shown in Figure 2, what

makes DQN patroller so effective is that DQN-based pa-
troller learns to sweep around the border until he finds any
footprints to follow. While for the policy gradient methods,
the optimal action distribution for any state without foot-
prints is observed to be close to a random uniform distri-
bution. In other words, PG methods learn an average of all
possible sweeping routes, and as a result, it will be not quite
effective in such a dynamic imperfect information game.

We further investigate how to find the optimal defender
strategy in a Stackelberg setting, i.e., when the attacker is
adaptive and best responds to the defender’s mixed strategy.
When the game is zero-sum (or fixed-sum), the SSE strategy
is also the NE strategy for the defender. One possible way of
computing NE in such a game is using Double Oracle algo-
rithm (McMahan, Gordon, and Blum 2003; Jain et al. 2011;
Jain, Conitzer, and Tambe 2013). Based on the above ex-
periment, we know that deep Q-learning is good at approx-
imating the best response strategy given a fixed opponent,
meaning that it can serve as the key building block for the
Double Oracle algorithm. Specifically, we can start with a
small number of pure strategies for both players. At each it-
eration, we first get the payoff matrix for current pure strate-
gies with simulations and compute the Nash Equilibrium for
the current game matrix. Then we fix the mixed strategy for
one player and compute the best response strategy of an-
other player with deep Q-learning. After getting a new best
response policy for each player, we evaluate the value of the
new payoff matrix and repeat the procedure until conver-
gence. In our proposed game model, the game may not be
zero-sum, but the two players’ payoffs are negatively corre-
lated. Despite the lack of theoretical guarantee, we adopt the
DO framework, start with one pure strategy for each player
represented by a randomly initialized DQN, and then use
our proposed deep Q-learning approach to approximate the
best response strategy for each player. We test the expected
utility of the defender’s strategy we got from the framework
against a best-responding attacker experimentally. Table 1
shows the preliminary results. The second and third column
shows the expected utility for the defender and attacker re-
spectively, where the defender uses the NE strategy com-
puted in the restricted game and the attacker uses the best
response strategy against the defender’s strategy (approxi-
mated by a trained DQN policy). The first observation is that
the best defender strategy of the first four iterations is found
in iteration 3, as measured by the value in the second col-
umn, and the solution quality is much higher than the first
iteration where the defender is using a random DQN pol-
icy. This means using double oracle with deep Q-learning
can be a promising way to find a good mixed strategy for
the defender for such a complex game setting. Our second
observation is that double oracle has not converged within
four iterations as expected. In fact, the values fluctuate a lot,
leading to the concern that limiting the number of iterations
in Double Oracle to be small may be problematic.

Future Research Directions
Since training a best response DQN policy against the new
opponent is often time-consuming, we can only run double
oracle algorithm for a few iterations given limited computa-

Table 1: Preliminary results of double oracle algorithm com-
bined with Deep Q-learning. The Expected Utilities (EU) in
the table are the simulation results when the defender uses
the NE strategy computed in the restricted game, and the at-
tacker uses the best response strategy against the defender’s
strategy (approximated by a trained DQN policy).

Iteration & | Defender EU | Attacker EU
1 -5.8775 5.9038
2 -4.3308 5.1455
3 -1.8848 2.6240
4 -3.7824 3.9441

tion resources and training time. Even with the DCH frame-
work proposed by Lanctot et al., the limited number of iter-
ations still present as a major bottleneck. This is one major
challenge for future research.

Also, we argue that the key online information and timing
aspects should not be neglected by the security game com-
munity. Integrating deep reinforcement learning with clas-
sical game-theoretic approaches can be a promising way
of finding solutions to such complex problems. Alternative
frameworks need to be proposed to find SSEs instead of NEs
efficiently when the game is not near zero-sum.

References

Adler, I. 2013. The equivalence of linear programs and
zero-sum games. International Journal of Game Theory
42(1):165-1717.

An, B.; Pita, J.; Shieh, E.; Tambe, M.; Kiekintveld, C.; and
Marecki, J. 2011. Guards and protect: Next generation
applications of security games. ACM SIGecom Exchanges
10(1):31-34.

Blum, A., and Monsour, Y. 2007. Learning, regret mini-
mization, and equilibria.

Brown, G. W. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374-376.

Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A
comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, And Cybernetics-Part
C: Applications and Reviews, 38 (2), 2008.

Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016.
Deploying paws: Field optimization of the protection assis-
tant for wildlife security. In AAAI 3966-3973.

Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal patrol
strategy for protecting moving targets with multiple mobile
resources. In Proceedings of the 2013 international confer-
ence on Autonomous agents and multi-agent systems, 957—
964. International Foundation for Autonomous Agents and
Multiagent Systems.

Gholami, S.; Ford, B.; Fang, F.; Plumptre, A.; Tambe, M.;
Driciru, M.; Wanyama, F.; Rwetsiba, A.; Nsubaga, M.; and
Mabonga, J. 2017. Taking it for a test drive: a hybrid
spatio-temporal model for wildlife poaching prediction eval-
uated through a controlled field test. In Proceedings of the

European Conference on Machine Learning & Principles
and Practice of Knowledge Discovery in Databases, ECML
PKDD.

Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2016. Deep
reinforcement learning for robotic manipulation. ArXiv e-
prints.

Hausknecht, M., and Stone, P. 2015. Deep recur-
rent g-learning for partially observable mdps. CoRR,
abs/1507.06527.

Jain, M.; Korzhyk, D.; Vanék, O.; Conitzer, V.; Péchoucek,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 1, 327-334. International Foundation for
Autonomous Agents and Multiagent Systems.

Jain, M.; Conitzer, V.; and Tambe, M. 2013. Security
scheduling for real-world networks. In Proceedings of the
2013 international conference on Autonomous agents and
multi-agent systems, 215-222. International Foundation for
Autonomous Agents and Multiagent Systems.

Kar, D.; Ford, B.; Gholami, S.; Fang, F.; Plumptre, A.;
Tambe, M.; Driciru, M.; Wanyama, F.; Rwetsiba, A.; Nsub-
aga, M.; et al. 2017. Cloudy with a chance of poaching: Ad-
versary behavior modeling and forecasting with real-world
poaching data. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, 159-167. In-
ternational Foundation for Autonomous Agents and Multia-
gent Systems.

Konda, V. R., and Tsitsiklis, J. N. 2000. Actor-critic algo-
rithms. In Advances in neural information processing sys-

tems, 1008—-1014.

Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Perolat, J.; Silver, D.; and Graepel, T. 2017.
A unified game-theoretic approach to multiagent reinforce-
ment learning. arXiv preprint arXiv:1711.00832.

McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In Proceedings of the 20th International Conference
on Machine Learning (ICML-03), 536-543.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529-533.

Pita, J.; Jain, M.; Marecki, J.; Ordéiiez, F.; Portway, C.;
Tambe, M.; Western, C.; Paruchuri, P.; and Kraus, S. 2008.
Deployed armor protection: the application of a game theo-
retic model for security at the los angeles international air-
port. In Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems: industrial
track, 125—-132. International Foundation for Autonomous
Agents and Multiagent Systems.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering

the game of go with deep neural networks and tree search.
Nature 529(7587):484-489.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057-1063.

Tambe, M. 2011. Security and game theory: Algorithms.
Deployed Systems, Lessons Learned.

Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double g-learning. In AAAI, 2094~
2100.

Xu, H.; Ford, B.; Fang, F.; Dilkina, B.; Plumptre, A.; Tambe,
M.; Driciru, M.; Wanyama, F.; Rwetsiba, A.; Nsubaga, M.;
et al. 2017. Optimal patrol planning for green security
games with black-box attackers. In International Confer-
ence on Decision and Game Theory for Security, 458—477.
Springer.

Yu, L.; Zhang, W.; Wang, J.; and Yu, Y. 2017. Seqgan:
Sequence generative adversarial nets with policy gradient.
In AAAI, 2852-2858.

