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Highlights

•We aims at addressing two key limitations of existing inverse reinforcement learning (IRL) methods:
• Learning reward functions from scratch and requiring large numbers of demonstrations to correctly infer the reward for each task.
•Assuming demos are for one isolated task, while in practice it is more natural and scalable to obtain heterogeneous demos.

•We propose a new meta-inverse reinforcement learning framework based on latent probabilistic context
variables termed PEMIRL.
•PEMIRL is capable of learning rewards from unstructured, multi-task demonstration data, and critically, use
this experience to infer robust rewards for new, structurally-similar tasks from a single demonstration.
•We demonstrate the effectiveness of our approach compared to state-of-the-art imitation and inverse
reinforcement learning methods on multiple continuous control tasks.

Backgrounds
Inverse RL Basic Principle: find a reward function rω that explains the expert behaviors. (ill-defined problem)
Maximum Entropy Inverse RL (MaxEnt IRL) (Ziebart et al., 2008) provides a general probabilistic framework
that solves the reward ambiguity problem:
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where Zω is the intractable partition function, i.e., an integral over all possible trajectories.
Adversarial Inverse RL (AIRL) (Fu et al., 2017) provides an efficient sampling-based approximation to MaxEnt
IRL, with a special parameterization for discriminator that allows us to extract reward functions at optimality:

Dω,φ(s, a, s ′) = exp(fω,φ(s, a, s ′))
exp(fω,φ(s, a, s ′)) + π(a|s), fω,φ(s, a, s

′) = rω(s, a) + γhφ(s ′)− hφ(s)

Under certain conditions, rω(s, a) is guaranteed to recover the ground-truth reward up to a constant.

Context-based Meta-Learning & Inverse Reinforcement Learning
Generalizing the notion of MDP with a probabilistic context variables m ∈ M, where M is the (discrete or
continuous) value space of m. We use p(m) to denote the prior distribution over m.
•Context-dependent reward function r : S ×A×M→ R; Context-dependent policy π : S ×M→ P(A).
•Expert policy: πE = arg maxπ Em∼p(m), (s1:T ,a1:T )∼pπ(·|m)

[∑T
t=1 r(st, at,m)− log π(at|st,m)

]
•Marginal trajectory distribution of expert: pπE(τ ) = ∫

M p(m) ∏T
t=1 πE(at|st,m)P(st+1|st, at)dm

Meta-Inverse Reinforcement Learning (Meta-IRL): Given a set of unstructured demonstrations i.i.d.
sampled from pπE(τ ), meta-learn an inference model q(m|τ ) and a reward function f (s, a,m), such that
given some new demonstration τE generated by sampling m′ ∼ p(m), τE ∼ pπE(τ |m′), with m̂ being inferred
as m̂ ∼ q(m|τE), the learned reward function f (s, a, m̂) and the ground-truth reward r(s, a,m′) will induce
the same set of optimal policies.

Meta-IRL with Probabilistic Context Variables

Under the framework of MaxEnt IRL, we first parametrize
two components:
•Context variable inference model qψ(m|τ ).
•Context-dependent reward function fθ(s, a,m).

We would like to maximize the the mutual information between two random variables m and τ under joint
distribution pθ(m, τ ) = p(m)pθ(τ |m): Ipθ(m; τ ) = Em∼p(m),τ∼pθ(τ |m)[log pθ(m|τ )− log p(m)], subject to:
•Desideratum 1. Matching conditional distributions: Ep(m) [DKL(pπE(τ |m)||pθ(τ |m))] = 0
•Desideratum 2. Matching posterior distributions: Epθ(τ )[DKL(pθ(m|τ )||qψ(m|τ ))] = 0
With Lagrangian duality and Lagrangian multipliers taking specific values, we have the relaxed problem:

min
θ,ψ
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−Ep(m) [DKL(pπE(τ |m)||pθ(τ |m))] + Em∼p(m),τ∼pθ(τ |m)[log qψ(m|τ )]

We can leverage adversarial reward learning (AIRL) to optimize this objective.

Experiments
Empirical evaluations in various continuous control tasks demonstrate the effectiveness of our framework:

Figure: Experimental domains (left) and visualizations of adapted rewards on Point-Maze (right).

Figure: Results of the disabled ant running forward and backward respectively with adapted rewards.

Figure: Results on direct policy generalization and reward adaptation to challenging situations.


