Generative Adversarial
Networks (GANS)
for Discrete Data

Lantao Yu
Shanghai Jiao Tong University
http://lantaoyu.com
July 26, 2017

Self Introduction — Lantao Yu

* Position
* Research Assistant at CS Dept. of SJTU 2015-now
e Apex Data and Knowledge Management Lab
e Research on deep learning, reinforcement learning and

multi-agent systems
e Education
* Third-year Undergraduate Student, Computer Science
Dept., Shanghai Jiao Tong University, China, 2014-now
* Contact
e lantaoyu@hotmail.com
e vulantao@apex.sjtu.edu.cn

Apex Data & Knowledge Management Lab

* Machine learning and data science

* with applications of recommender systems,
computational ads, social networks, crowdsourcing,
urban computing etc.

e Students
8 PhDs
* 8 Masters
e 24 Undergrads

* www.apexlab.org

Professor Yong Yu A.P. Weinan Zhang

Content

* Fundamentals - Generative Adversarial Networks

* Connection and difference between generating discrete
data and continuous data with GANs

 Advances - GANs for Discrete Data

* SeqGAN: Sequence Generation via GANs with Policy
Gradient

* IRGAN: A Minimax Game for Unifying Generative and
Discriminative Information Retrieval Models

Generative Adversarial
Networks (GANS)

[Goodfellow, I., et al. 2014. Generative adversarial nets. In
NIPS 2014.]

Problem Definition

* Given a dataset D = {z}, build a model ¢(z) of
the data distribution that fits the true one p(x

* Traditional objective' maximum likelihood estimation (MLE)

max 1 Z log g(z) ~ max By p () log g(z)]
xED

* Check whether a true data is with a high mass density of
the learned model

Problems of MLE

* Inconsistency of Evaluation and Use

man Ea;rwp(a;‘) [lOg Q(x)] mélX Equ(at) [lOg p(ﬂ?)]

Training/evaluation Use (Turing Test)
* Check whether a * Check whether a

true data is with a model-generated

high mass density data is considered as

of the learned true as possible

model * More straightforward
* Approximated by but it is hard or

1 impossible to directly

tHax |D| Z log g(z) calculate p(z)

Problems of MLE

* Equivalent to minimizing asymmetric K L(p(x)||q(x)):

KL(p@)la() = [p(o)log Pz) g,

X q()

« When p(z) > 0 but g(x) — 0, the integrand inside the KL
grows quickly to infinity, which means MLE assigns an
extremely high cost to such situation

* When p(z) — 0 but g(x) > 0, the value inside the KL
divergence goes to 0, which means MLE pays extremely low
cost for generating fake looking samples

[Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks. arXiv, 2017.]

Problems of MLE

e Exposure bias in sequential data generation:

Training Inference

Update the model as follows: When generating the next

token Yt , sample from:

max Ky pi,. zt: log Go(yt|Y1:t—1

The real prefix

|
l
l
l
I
l
l
I
l
l
I
: The guessed prefix
|

Generative Adversarial Nets (GANSs)

 What we really want

IIlanX E:Bwq(x) [log p(l‘)]

e But we cannot directly calculate p(x)

* |dea: what if we build a discriminator to judge
whether a data instance is true or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

Generative Adversarial Nets (GANSs)
Real World —>

! -—*Q Discriminator
Generator Q—n !

* Discriminator tries to correctly distinguish the true data and
the fake model-generated data

0000000
0000000
0000000

~ - ———

* Generator tries to generate high-quality data to fool
discriminator

* G & D can be implemented via neural networks

* |ldeally, when D cannot distinguish the true and generated
data, G nicely fits the true underlying data distribution

GANs: A Minimax Game

* The most general form:

min max V (D, G)
G D

— EZUdiata(x) [log D(CE)] -+ E(pNG(:p) [log(l o D(CU))]

B /pdata(m) | log(D(az)) - G(aj) ' log(l o D(CI}))CZ$

Probability Density Function

Generating continuous data

* The generative model is a differentiable mapping
from the prior noise space to data space

* First sample from a simple prior 2 ~ p(z), then
apply a deterministic function G : Z - X

* No explicit Probability Density Function for @
data x

GANSs for continuous data

* The most general form:

m(%n max V(D,G) = Eppyora (@) log D()] + Eypozy log(l — D(x))]

— | pawiala) Jog(D(z)) G2 log(1 ~ D(x))d

Probability Density Function

* Without explicit P.D.F., we can rewrite the
minimax game as:

minmax V (D, G)
G D

— Eprdata<x) [log D(CE‘)] + Ezwp (2) [lOg(l _ D(G(Z)))]

= [pasta(@) - og(D(@)dz + [p.(2) log(1 = D[GE))do

Directly optimize the
differentiable mapping!

GANSs for continuous data

4. Further gradient on generator

VL(p) Vx
Vax Vo)

1. Generation

r = G(z;09))

3. Gradient on generated data

VL(p)
Vzx

2. Discrimination

P(True|z) = D(x;

* In order to take gradient on the generator parameter, x has to be continuous
JP) = Epropura@ 108 D(@)] + Eenp, () llog(1 = D(G(2)))]

Generator mGin mSlXJ(D) Discriminator mI?XJ(D)

GANSs for continuous data

Data
Discriminator & Y Y
o o
\ . + Generator
" s ‘v e Py

r .
A
Y " oo »
P ' & L e
' L A ' 'Y
') L
54 Ve

///////! ////////l AN

min max V (D, G)
G D

= Epmpynen () [10g D(2)] + E.p. (o) [log(1 — D(G(2)))]

= [pasta(@) - og(D()de + [p.(2) log(1 = D[GE))do

Directly optimize the
differentiable mapping!

|deal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the true
and generated data //// \\\\

Training GANSs

for number of training iterations do Traini ng discriminator
for k steps do
e Sample minibatch of m noise samples {2V, ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {z'!),... (™} from data generating distribution
pdata(w)o

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [to D () +10g (1- D (G (=7)))].

1=

end for

e Sample minibatch of m noise samples {z'"/, ..., 2"/} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

m

Vgg% ;log (1 — D (G (z‘”))) :

end for

Training GANSs

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {2V, ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {z'!),... (™} from data generating distribution
pdata(w)o

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [to D () +10g (1- D (G (=7)))].

1=

end for Training generator

e Sample minibatch of m noise samples {z'"/, ..., 2"/} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

m

Vgg% ;log (1 — D (G (z‘”))) :

end for

Optimal Strategy for Discriminator

* Optimal D(x) for Data
any Pdata(®) and pg(z) |

. Discriminator 4
is always \ e

D (gj) — Pdata (33) :. ..
Pdata(T) + pa(T) SRRV

Generator

e

\ 'y '
LY '

[Y
h

‘e

"

Y/

Reformulate the Minimax Game

JP) — Exwpdata(ib) [log D(CU)] + Eszz(z) [log(l — D(G(Z)))]
Eyp, (o)ll0 D(&)] + Eapy o llog(1 — D(a)]
Pdata(T)
Pdata(T) + pa()
pa(x)
Pdata(T) + pa()

aa"’ G
— log(4) + K L(paasa|| 2222 T PG

— Eprdata (x) 1Og

Pdata, + PG)

+ K L(pa| 5

mén JD) i something between m(%n Ex~py... [Pc(T)] and m(%n Ex~pe [Pdata ()]

[Huszar, Ferenc. "How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?." arXiv (2015).]

Generating discrete data

* The generative model computes a probability
distribution over the candidate choices

* First computes the Probability Density Function
of data x (e.g. softmax over the vocabulary),
then sample from it.

GANSs for discrete data

* With explicit P.D.F. we can simply start with the most
general form of the minimax game:

minmax V' (D, G)
G D

= Epmpuaea (@) 108 D(x)] + Epwg(a) log(l — D(x))]

= /pdata(il?) -log(D(z)) +|G(z)

-log(1 — D(x))dx

Probability Density Function

* Now, instead of optimizing a transformation, we can
directly optimize the P.D.F. with the guidance of the

discriminator.

* Note that even for discrete data, G(x) is differentiable!

GANSs for Discrete Data

* We could direct build a parametric
distribution for discrete data

* For example of the discrete data

A; Probability
{A1; Ag; As; Ag; As)
e The data P.D.F. could be defined as o
A ef(Az) 0:00'2
p(Z) o Z] ef(Aj) ’ Al A2 A3 A4 A5

where the scoring function could be defined based
on domain knowledge, e.g., a neural network with A,
embedding as the input

Borrow the Idea from RL

» For agenerator G(A;) = P(4;;6'%))

* [ntuition
* lower the probability of the choice that leads to low value/reward
 higher the probability of the choice that leads to high value/reward

* The one-field 5-category example

1. Initialize 0 3. Update @ by policy gradient 5. Update ¢ by policy gradient
A, Probability A, Probability A, Probability
0.3 0.4 0.4
0.2 0.3 0.3
' 0.1 0.1
0 1Tl 1.l
Al A2 A3 A4 A5 Al A2 A3 A4 A5 Al A2 A3 A4 A5
2. Generate A, 4. Generate A,

Observe positive reward (from D) Observe negative reward (from D)

Advances:
GANSs for Discrete Data

* Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. AAAI 2017.

* Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou
Wang, Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for
Unifying Generative and Discriminative Information Retrieval Models.

SIGIR 2017.

SeqGAN:
Sequence Generation via

GANs with Policy Gradient

[Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. AAAI 2017.]

Problem for Discrete Data

* On continuous data there is direct gradient

v9<G> Zlog (1 - D(G(z7)))

e Guide the generator to (slightly) modify the output

®

* No direct gradient on discrete data D

e Text generation example .

+ “PRRBA L @

e “l caught a penguin in the park”

* From lan Goodfellow: “If you output the word ‘penguin’, you
can't change that to "penguin + .001" on the next step, because
there is no such word as "penguin + .001". You have to go all
the way from "penguin" to "ostrich".”

[https://www.reddit.com/r/MachinelLearning/comments/40ldg6/generative_adversarial_networks_for_text/]

G Next MC D

. 0-0-0-0-0 : action search
True data: 0000 :
+0-0-0-0-0 ! : Reward
" O-O0-0-0-0 ' State
Real World . 0-0-0-0-0 | T D —— Reward
' t Train .
. —— [
:.....I i Reward
G Generate : O—Q—Q—Q—Q: ,
»>0-0-0-00 . ;
. 0-0-0-0-0 ! : Reward
. 0-0-0-0-0 : |

Policy Gradient

* Generator is a reinforcement learning policy G(y¢|Y1.¢1—1)
of generating a sequence

* decide the next word to generate given the previous ones

* Discriminator provides the reward (i.e. the probability
of being true data) D(Y{',) for the whole sequence

Sequence Generator

* Objective: to maximize the expected reward

J(6) = E[Rrlso, 6] = > Galy1lso) - Q% (s0, 1)
Y1 €Y

* State-action value function Qgi (s, a)is the expected
accumulative reward that

 Start from state s (G Next MC D

T king ~ction g action search
* Ia Reward
* And following policy G until the end ~_State_ Reward

Reward

* Reward is only on completed
sequence (no immediate reward)

ngb (S _ Yl:T—l, a4 = yT) _ qu (Yl:T) Policy Gradient

T Reward

State-Action Value Setting

* Reward is only on completed sequence
* No immediate reward
* Then the last-step state-action value
ngb(s =Yi.r—1,a=yr) = Dy(Y1.7)
G Next MC D

action search

* For intermediate state-action value moward
* Use Monte Carlo search to estimate 5% Reward
Yir, ..., Y%} = MCY (Y1.4; N) Reward
* Following a roll-out policy G T Revlvard

gfb (s =Y 1,04 =1) = Policy Gradient

N

N Zg:l Dy(Y{i7), Yiip € MC©? (Y15 N) for t<T
Dy(Y1.4) for t=T,

Training Sequence Generator

* Policy gradient (REINFORCE)

T
VoJ(0) = By, i~ncol D VoGo(yilYia-1) - Q5 (Yiu—1, 1))

T
~ Z Z V@Gg(yt|y1;t_1) : Qgi (let—hyt)

t=1y €y

T
—Z Z Go(yt|Y1.4.-1)Volog Go(ye|Y1.6-1) - QD (Y1:t—1,9¢)

t=1y, €y

IIM%

ytNGe(yt|Y1:t—1) [VH log GQ(yt|Y1!t—1) ' Qgi (let—la yt)]7

0« 0+ anVoeJ(0)

[Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.]

Training Sequence Discriminator

* Objective: standard bi-classification

mqbin —Ey paaia 108 Dy (Y)] — Ey gy log(l — Dg(Y)))

Overall Algorithm

Algorithm 1 Sequence Generative Adversarial Nets
Require: generator policy Gy; roll-out policy G g; discriminator

D, asequence dataset S = { X, .7}

1: Initialize Gy, Dy with random weights 6, ¢.

2: Pre-train Gy using MLE on S

3: B+ 0

4: Generate negative samples using Gg for training D

5: Pre-train D, via minimizing the cross entro
o repeat .___________________ /U7
7. for g-steps do

8: Generate a sequence Yi.7 = (y1,...,yr) ~ Go
9: fortinl: 7T do
10: Compute Q(a = yi;8 = Y1..—1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8)
13: end for
14: for d-steps do
15: Use current Gy to generate negative examples and com-
bine with given positive examples S
16: Train discriminator D for k£ epochs by Eq. (5)
17: end for
18: B+« 0

19: until SeqGAN converges

Sequence Generator Model

incredibly ?

is
Softmax sampling
over vocabulary @ @ @

| | |
~ N (O N)
> ——— -
A Leletll A
\I /_> J >\| J_>
3 (x) &)
Shanghai is incredibly

* RNN with LSTM cells

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735-1780.]

Sequence Discriminator Model

Feature Map Max over Time

Pooling
Word Embedding
= Concat. Multi-layer Perceptron

You

are . :

not : Logistic
listening : e Output
to :

a ' > >
word | | | [| |\ —mF—+++—

I

am | | | | | N \ —t—1+—"1+—Ft+1+— ... >
typing

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

Experiments on Synthetic Data

* Evaluation measure with Oracle

T
NLLoracle — _EY]_:TNGQ {Z log Goracle(yt|Y1:t—1)}
t=1

* An oracle model (e.g. the randomly initialized LSTM)

* Firstly, the oracle model produces some sequences as
training data for the generative model

e Secondly the oracle model can be considered as the
human observer to accurately evaluate the perceptual
qguality of the generative model

Experiments on Synthetic Data

* Evaluation measure with Oracle

T
Z log Goracle(yt |Y1:t—1)]

NLLoraCIe — _EY:[;TNGQ
t=1
Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
p-value <107° | <107° | <107° <107°
100 Learning curve
— SeqGAN
o8] N VILE
% 9.6 - - = Schedule Sampling
« | N\ e PG-BLEU
S 94
>
o 92
—
> 90
8.8
8.6

0

50

200

250

Experiments on Real-World Data

* Chinese poem generation

Algorithm | Human score | p-value | BLEU-2 | p-value
MLE 0.4165 0.6670 _6
SeqGAN 05356 | 003 | g73g9 | <10
Real data 0.6011 0.746

* Obama political speech text generation

Algorithm | BLEU-3 | p-value | BLEU-4 | p-value
MLE 0.519 _6 0.416
SeqGAN } 0.556 ‘ <10 0.427 { 0.00014

* Midi music generation

Algorithm | BLEU-4 | p-value | MSE | p-value
MLE 0.9210 2238
SeqGAN ‘ 0.9406 } <1077 20.62 ‘ 0.00034

Experiments on Real-World Data

* Chinese poem generation

MfEEXE RPBEEF.

KPEERER |, BIIHELAT. LERTARIR , ER—T %,

BAXATHE , TUSSES. PUE= s |, =S,

Can you distinguish which part is from human or machine?

Experiments on Real-World Data

* Chinese poem generation

MfEEXE RPBEEF.

KPEERER |, BIIHELAT. LERTARIR , ER—T %,

BAXATHE , TUSSES. PUE= s |, =S,

Human Machine

Obama Speech Text Generation

e When he was told of this

extraordinary honor that he
was the most trusted man in
America

But we also remember and
celebrate the journalism that
Walter practiced -- a standard
of honesty and integrity and
responsibility to which so many
of you have committed your
careers. It's a standard that's a
little bit harder to find today

| am honored to be here to pay
tribute to the life and times of
the man who chronicled our
time.

Human

* istood here today i have one

and most important thing that
not on violence throughout the
horizon is OTHERS american
fire and OTHERS but we need
you are a strong source

for this business leadership will
remember now i cant afford to
start with just the way our
european support for the right
thing to protect those american
story from the world and

i want to acknowledge you
were going to be an
outstandingdjob times for
student medical education and
warm the republicans who like
my times if he said is that
brought the

Machine

IRGAN:;
A Minimax Game for
Information Retrieval

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,
Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying
Generative and Discriminative Information Retrieval Models. SIGIR 2017.

Two schools of thinking in IR modeling

Generative Retrieval Discriminative Retrieval

document,

(Query,, document,)

e
RN e

relevance
document,

* Assume there is an underlying e Learns from labeled relevant
stochastic generative process judgments

between documents and queries

* Predict the relevance given a query-
* Generate/Select relevant documents document pair

given a query

Three paradigms in Learning to Rank (LTR)

* Pointwise: learn to approximate the relevance
estimation of each document to the human rating

* Pairwise: distinguish the more-relevant document
from a document pair

e Listwise: learn to optimise the (smoothed) loss
function defined over the whole ranking list for
each query

IRGAN: A minimax game unifying both models

* Take advantage of both schools of thinking:

* The generative model learns to fit the relevance
distribution over documents via the signal from the
discriminative model.

* The discriminative model is able to exploit the unlabeled
data selected by the generative model to achieve a
better estimation for document ranking.

IRGAN Formulation

* The underlying true relevance distribution Pirue(d|q,)
depicts the user’s relevance preference distribution
over the candidate documents with respect to his
submitted query

* Training set: A set of samples from Pirue(d|q, 1)

* Generative retrieval model Po(d|q,7)
e Goal: approximate the true relevance distribution

e Discriminative retrieval model qu(q, d)

* Goal: distinguish between relevant documents and non-
relevant documents

IRGAN Formulation

* Overall Objective
N

JG*,D* — m@in m(?x (EdNPtrue(dmn,T) [lOg D(d!qn)] +

n=1

Bty (dlgnr) l08(1 = D(dlgn))])

where D(d|q) = o(fs(d,q)) = 1 ij}fpf?}ng);))

IRGAN Formulation

e Optimizing Discriminative Retrieval

N
6" = argmax D (B dlae.r) [08(0 (Fo(ds)] +
n=1

Edeopy- (dlanr) 108(1 = 0 (fo(d, n)))])

IRGAN Formulation

* Optimizing Generative Retrieval

* Samples documents from the whole document set to
fool its opponent

N
0" =argmin) (Eapraetignn) e o(fy(d.an)] +
n=1

Iqu'dfqo@(dlqn,r) log (1-0 fgb (d,qn))])

——
denoted as J©(qn)

= arg m@ax Z Ed~p9(d|qn,r) :log(l + exp(f¢(d, qn)))] Reward Term
n=1

 REINFORCE (Advantage Function)

IRGAN Formulation

e Algorithm
Algorithm 1 Minimax Game for IR (a.k.a IRGAN)

Input: generator pg(d|q, r); discriminator f¢(xl.q);
training dataset S = {x}
1: Initialise pg(dlq, r), f (g, d) with random weights 0, ¢.
2: Pre-train pg(d|q, r), f4(q, d) using S
3: repeat
4: for g-steps do
5 po(dlq, r) generates K documents for each query q
6 Update generator parameters via policy gradient Eq. (5)
7. end for
8 for d-steps do
9 Use current pg(d|q, r) to generate negative examples and com-
bine with given positive examples S
10: Train discriminator fy (g, d) by Eq. (3)
11: end for
12: until IRGAN converges

IRGAN Formulation

e Extension to Pairwise Case

e |t is common that the dataset is a set of ordered
document pairs for each query rather than a set of
relevant documents.

* Capture relative preference judgements rather than
absolute relevance judgements

* Now, for each query g, ,we have a set of labelled
document pairs R, = {{(d;,d;)|d; = d;}

IRGAN Formulation

e Extension to Pairwise Case

e Discriminator would try to predict if a document pair is
correctly ranked, which can be implemented as many
pairwise ranking loss function:

« RankNet: log(1l + exp(—=2))
 Ranking SVM (Hinge Loss): (1 — z)+
* RankBoost: exp(—=z)

where z = f¢(du,Q> - fqb(dv,CJ)

IRGAN Formulation

e Extension to Pairwise Case

* Generator would try to generate document pairs that
are similar to those inR,, , i.e., with the correct ranking.

* A softmax function over the Cartesian Product of the
document sets, where the logits is the advantage of d;
over d; in a document pair (d;, d;)

An Intuitive Explanation of IRGAN

Observed positive samples
Unobserved positive samples

Unobserved negative samples

Generated unobserved samples

Upward force from REINFORCE

Downward force from knocker

The underlying correlation
between positive samples

A
% *%e
_ i J_ R A Dis_criminat(()jr
v ‘ ? E ‘ Decision Boundary
} ‘ '

Figure 1: An illustration of IRGAN training.

An Intuitive Explanation of IRGAN

* The generative retrieval model is guided by the
signal provided from the discriminative retrieval
model, which makes it more favorable than the

non-learning methods or the Maximum Likelihood
Estimation (MLE) scheme.

* The discriminative retrieval model could be
enhanced to better rank top documents via a
strategic negative sampling from the generator.

Experiments: Web Search

Table 1: Webpage ranking performance comparison on
MQ2008-semi dataset, where * means significant improve-
ment in a Wilcoxon signed-rank test.

P@3 P@5 P@10 MAP
MLE 0.1556 0.1295 0.1029 0.1604
RankNet [3] 0.1619 0.1219 0.1010 0.1517
LambdaRank [5] 0.1651 0.1352 0.1076 0.1658
LambdaMART [4] 0.1368 0.1026 0.0846 0.1288
IRGAN-pointwise 0.1714 0.1657 0.1257 0.1915
IRGAN-pairwise 0.2000 0.1676 0.1248 0.1816
Impv-pointwise 3.82% 22.56%" 16.82%* 15.50%"
Impv-pairwise 21.14%" 23.96%" 15.98% 9.53%
NDCG@3 | NDCG@5 | NDCG@10 | MRR
MLE 0.1893 0.1854 0.2054 0.3194
RankNet [3] 0.1801 0.1709 0.1943 0.3062
LambdaRank [5] 0.1926 0.1920 0.2093 0.3242
LambdaMART [4] 0.1573 0.1456 0.1627 0.2696
IRGAN-pointwise 0.2065 0.2225 0.2483 0.3508
IRGAN-pairwise 0.2148 0.2154 0.2380 0.3322
Impv-pointwise 7.22% 15.89% 18.63% 8.20%
Impv-pairwise 11.53% 12.19% 13.71% 2.47%

Experiments: Web Search

0.26 T T ! I { ! ! ! ! !
: : : : : 0.18 F--omemmedememie e foeeeeeies Rt SRCTE -
0.24 : : H H H
0.22 iy 216
Ty ®
@ 0.20 g 0.14
8 0.18 P
a O 0.12
0.16)
: : : : : i : : :
0.14 |---feeemiceemeief — Generator of IRGAN [0.10 — Generator of IRGAN
0.12 Wf..i._.._i]== LambdaRank | : i | == LambdaRank
: .- RankNet X It -1 -+ RankNet H
010 1 1 T | T | | T I T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Training Epoch Training Epoch

Figure 2: Learning curves of the pointwise IRGAN on web
search task.

T T T T T T T T T T T T
0.22 [b N] 016 o e SN
___ Jwn
i 0200 @) 0.14
@ 0.18 g E
Q VAR 1.2 e P U SR SR
O w 12 :
D 016 F b T T g 10 : : : ;
2 - ‘ - Y o0.10 L : R I
o1all ™ Discriminator of IRGAN : : o = Discriminator of IRGAN
““7[] =— Generator of IRGAN |77 FTTT L _ 0oosH Generator of IRGAN :
- - LambdaRank YO == LambdaRank |77 A 7
0.12H ... RankNet B e B -+« RankNet ;
T T T i i 0.06 T T T T i i
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Training Epoch Training Epoch

Figure 3: Learning curves of the pairwise IRGAN on web
search task.

Experiments: Item Recommendation

Table 3: Item recommendation results (Movielens).

| P@3 | P@5 | P@10 | MAP
MLE 0.3369 0.3013 0.2559 0.2005
BPR [35] 0.3289 0.3044 0.2656 0.2009
LambdaFM [45] 0.3845 0.3474 0.2967 0.2222
IRGAN-pointwise | 0.4072 0.3750 0.3140 0.2418
Impv-pointwise | 5.90%* | 7.94%* | 583%" | 8.82%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3461 0.3236 0.3017 0.5264
BPR [35] 0.3410 0.3245 0.3076 0.5290
LambdaFM [45] 0.3986 0.3749 0.3518 0.5797
IRGAN-pointwise | 0.4222 0.4009 0.3723 0.6082
Impv-pointwise | 5.92%* | 6.94%° | 583%" | 4.92%"

Table 4: Item recommendation results (Netflix).

| P@3 | P@5 | P@10o | MAP
MLE 0.2941 0.2945 02777 | 0.0957
BPR [35] 0.3040 0.2933 0.2774 | 0.0935
LambdaFM [45] 0.3901 0.3790 03489 | 0.1672
IRGAN-pointwise | 0.4456 0.4335 0.3923 0.1720
Impv-pointwise | 14.23%" | 14.38%* | 1244%" | 2.87%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3032 0.3011 0.2878 0.5085
BPR [35] 0.3077 0.2993 0.2866 0.5040
LambdaFM [45] 0.3942 0.3854 0.3624 0.5857
IRGAN-pointwise 0.4498 0.4404 0.4097 0.6371

Impv-pointwise | 14.10%" 14.27%* 13.05%* 8.78%"

Experiments: Item Recommendation

Precision@5

I I I I T T
— Generator of IRGA : :
— - LambdaFM

—_—_—re e e — e — — = = — = = == = —]

.......................

1C|)0 200 300 400 500 600 70
Generator Training Epoch

0.405 , : , . :

0.400

0.395

Te)

® 0.390

O

= 0385
0.380
0.375

0.370

— Generator of IRGA
— - LambdaFM

£ R RN S v S AON Sy PR

0 lcl)O 2(|)0 3(|)0 4(|)0 5(|)0 6([)0 7(|)
Generator Training Epoch

Figure 6: Learning curve of precision and NDCG of the gen-
erative retrieval model for top-5 item recommendation task
on Movielens dataset.

Experiments: Question Answering

Table 5: The Precision@ 1 of InsuranceQA.

test-1 test-2
QA-CNN [9] 0.6133 | 0.5689
LambdaCNN [9, 49] 0.6183 | 0.5838
IRGAN-pairwise 0.6383 | 0.5978
Impv-pairwise 3.23%" | 2.74%
O 7 T T T T T 064 T T I T T
0.6 ————— T T |
- - 0.63
T e S ISR 1 ®
S S o062
% 0.4 memmmm b . % _____________________
9 |9
B T] USRUN: SHSUNENE SIRUN SN SIS D" S— o 15 1 ST o N SRV FERRARINT OIS SRR S
O/ Generator of RGAN ™ """""" """"" 080 — Ofcriminatorof RGAN |
0'10 5 10 15 20 25 30 0 5 10 15 20 25 30
Generator Training Epoch Discriminator Training Epoch

Figure 8: The experimental results in QA task.

Summary of IRGAN

* We proposed IRGAN framework that unifies two
schools of information retrieval methodologies, via
adversarial training in a minimax game, which takes
advantage of both schools of thinking.

e Significant performance gains were observed in
three typical information retrieval tasks.

* Experiments suggest that different equilibria could
be reached in the end depending on the tasks and
settings.

Summary of This Talk

* Generative Adversarial Networks (GANs) are so
popular in deep unsupervised learning research

* GANs provide a new training framework closer to
the target use of the generative model

max Ea:wp(a:) [log Q(x)] max Ea:wq(a:) [log p(SC)]
Training/evaluation Use (Turing Test)

* For discrete data generation, one could directly
define the parametric distribution and optimize the
P.D.F. by policy gradient methods, e.g. REINFORCE

Thank You

Lantao Yu
Shanghai Jiao Tong University
http://lantaoyu.com

e Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence Generative
Adversarial Nets with Policy Gradient. AAAI 2017.

* Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,
Peng Zhang and Dell Zhang. IRGAN: A Minimax Game for Unifying Generative
and Discriminative Information Retrieval Models. SIGIR 2017.

