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Main Technical Track

Computational
Sustainabllity

Cognitive Systems

Integrated System

Total of 4 technical tracks

Submitted Accepted

Damo Program

Senlor Member
Doctoral Consortium 31 16 0.516 31
What's Mot Track 10

Student Abstracts 115 67 0.583 44
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AAAI-17 Outstanding Paper Award

Label-Free Supervision of Neural Networks
with Physics and Domain Knowledge

Russell Stewart , Stefano Ermon
Department of Computer Science, Stanford University



Traditional Supervised Learning Setting

1D {(le,yl), Ce ey ($n,yn)}

The goal istolearn a function f : X — Y
mapping inputs to outputs.

The goal of our method is to train a networlk,
f, mapping from inputs to outputs that we

care about, without needing direct examples
of those outputs.



The goal of our method is to train a networlk,
f, mapping from inputs to outputs that we

care about, without needing direct examples
of those outputs.
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Figure 1: Constraint learning aims to recover the transfor-
mation f without providing labels y. Instead, we look for a
mapping [ that captures the structure required by g.

A

f — argmlnzg Ti, | (5’7@)) + R(f)

fer

,[:_



Tracking an object in free fall

* |In the first experiment, we record videos of an object being
thrown across the field of view and aim to learn the object’s
height in each frame.

« Mapping: (]Rheightxwidthx?))N VRN

* the plot of the object’s height over time will form a parabola:

Vi = Yo + vo(iAt) 4+ a(iAt)?



Tracking an object in free fall

Learning to track an object

es a P
i

[ » - 5 ) -
| Outputs have to form a paraboia J




Given any trajectory of N height predictions, f(x) , we fit a parabola
with fixed curvature to those predictions, and minimize the resulting
residual.

a = [aAt?, a(2At)?, ..., a(NAt)?]

y=a+AA"A)T'AT (f(x) —a) (3)
where
- At 1
oAt 1
A_ | 3At 1
CNAt 1
N



Tracking an object in free fall

Height of pillow vs. Time
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Tracking the position of a walking man

70 Position of man vs. Time
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Detecting objects with causal relationships

hoasPeachzTrue. hasMario=True Peach channel means Mario channel means

o 2 TR ; T — I Y B N T

Peach channel means Mario channel means

Task: predict whether each image contains Mario (red)
and Peach (yellow), knowing only that Peach => Mario



Detecting objects with causal relationships

Explore the possibilities of learning from logical constraints
imposed on single images.

 Our aim is to create a pair of neural networks f = (f1, f2) for
identifying Peach and Mario, respectively.

Rather than supervising with direct labels, we train the networks
by constraining their outputs to have the logical relationship
vyl =y2

Need three complicated loss function:

* h1l forces rotational independence of the output by applying a random
horizontal and vertical reflection p, to images.

* h2 and h3 allows us to avoid trivial solutions by encouraging high
standard deviation and high entropy outputs, respectively.
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Distant Domain Transfer Learning

Ben Tan,” Yu Zhang,” Sinno Jialin Pan,” Qiang Yang™
"Hong Kong University of Science and Technology, Hong Kong
“"Nanyang Technological University, Singapore
{btan,zhangyu,qyang} @cse.ust.hk, sinnopan@ntu.edu.sg



Number of labeld images

Classification Accuracy of Tiger
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Supervised Leanring Transfer Learning

Classification Accuracy of Airplane
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* Inspired by human’s ‘transitivity’ learning and inference ability
* From one intermediate domain => multiple intermediate domain

* Automatically select the useful subset of data from each intermediate
domain

* Almost all existing transfer learning methods (instance weighting,
feature mapping, model adaptation) assume the source and target
domain are closely related.

* The goal of DDTL is to exploit the unlabeled data in the intermediate
domains to build a bridge between the source and target domains
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Table 2: Accuracies (%) of selected tasks on Catech-256 and AwA with SIFT features.

SVM DTL GFK LAN | ASVM TTL STL SLA
‘horse-to-face’ 84+2 | 882 | 7T7T+3 | 7T9+2 | 7644 | 7T8+2 | 8 £33 | 92 +£2
‘airplane-to-gorilla® | 75+1 | 62+3 | 675 | 664+4 | 51 +2 | 654+2 | 76+ 3 | 84 £ 2
‘face-to-watch’ Hh+7 | 68+3 | 61+4 | 63+£4| 605|674 | 75+5| 88 +4
‘zebra-to-collie’ 13 |69+2 | 56+2 | 573 | 592 | 703 | 723 | 76 =2
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